NI-MH BATTERY SPECIFICATION

Model: TY-2/3A-1100mAh

A. Basic

pusic		
	Туре	Sealed Rechargeable Ni-MH
	Model	TY-2/3A-1100mAh
Size		2/3A
Nominal Voltage (V)		1.2
Nomina	al Capacity (mAh)	1100
Dimension	Diameter (mm)	$17.0^{^{+0}}$ _{^{-0.7}}
	Height (mm)	$28.8^{\pm0.5}$
Standard Charging	Current (mA)	110
	Time (h)	16
Osciala Chamain a	Current (mA)	330
Quick Charging	Time (h)	4
Rapid Charging	Current (mA)	1100
	Time (h)	1.2
	Standard Charging	0~45
Operation	Rapid Charging	10~40
Operation Temperature(°C)	Discharging	-20~65
Temperature(C)	Storage	-20~35(RH≤85%)
Permanent (Charging Current (mA)	33~55
Maximum Discharging Current (mA)(continuous)		3300
Impedance (m Ω)		≤25 (1000Hz)
Discharge Cut-off Voltage (V)		1.00
Charge Retention (20°C)		≥70%
Weight Approx. (g)		21

B.Test Report

Tests are carried out within one month of delivery under the following condition:

1. Ambient Conditions:

Room Temperature 20 \pm 5 °C

Relative Humidity 65%±20%

2. Capacity Testing

2.1 Standard Charging

0.2C discharge to 1.00V/cell

0.1C charging for 16 hours

Rest for 1 hours

0.2C discharge to 1.00V/cell.

Within 3 charge/discharge cycles, the capacity is no less than 1100 mAh (100%).

2.2 Quick Charging

0.2C discharge to 1.00V/cell

0.3C charging for 4 hours

Rest for 1 hours

0.2C discharge to 1.00V/cell.

Within 3 charge/discharge cycles, the capacity is no less than 1100 mAh (100%).

2.3 Rapid Charging

1C discharge to 1.00V/cell.

1C charging for 72 minutes or $-\Delta V=10mV/cell$.

Rest for 1 hours

1C discharge to 1.00V/cell.

Within 3 charging/discharging cycles, the capacity is no less than 990 mAh (90%).

NI-MH BATTERY SPECIFICATION

3. Open Circuit Voltage (OCV)

After the battery is fully charged, within 1 hour, the OCV is greater than 1.25V/cell

4. Internal Impedance

After the battery is fully charged, within 1 hour, the impedance is not greater than $25 \text{ m}\Omega$, as tested by 1000Hz AC source.

5. Charge Retention

The fully charged battery is held under temperature of $20\pm2^{\circ}$ C for 28 days, the discharged capacity is no less than 770 mAh (70%).

6. Overcharging

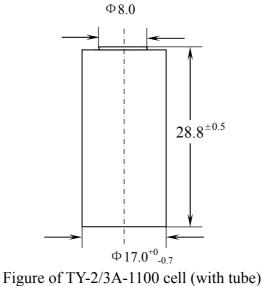
Under temperature of 20±5°C, the battery is charged at 0.1C rate for 48 hours. No deformation of the battery can be found. Standard capacity can be attained under normal discharging operation.

7. Cycle Life

7.1 Normal Cycling Test:

Cycle No.	Charge	Rest	Discharge		
1	$0.1C \times 16hrs$	None	$0.25C \times 2hrs 20mins$		
2~48	$0.25C \times 3hrs 10mins$	None	$0.25C \times 2hrs 20mins$		
49	$0.25C \times 3hrs 10mins$	None	0.25C to 1.00V/cell		
50	$0.1C \times 16hrs$	1~4hrs	0.2C to 1.00V/cell		
Cycle 1 to 50 shall be repeated until the discharge duration on any 50th cycle					

becomes less than 3hrs After 500 cycles of charging/discharging, capacity 660 mAh (60%) can be maintained under the cycling test.


7.2 Fast cycling test (reference) :

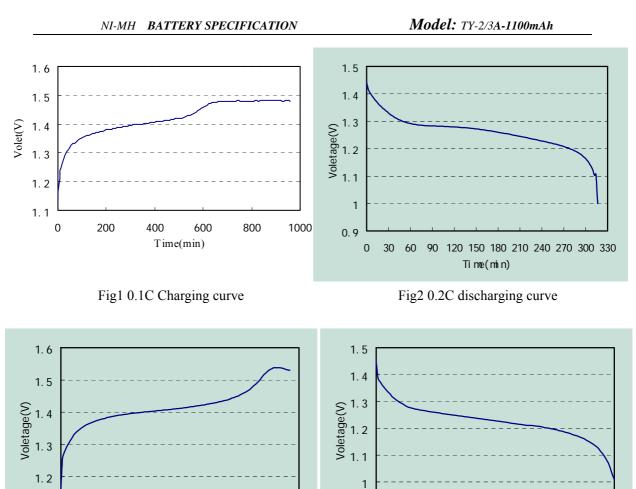
Charging: 1C for 66 minutes, under - ΔV control (5mV/cell)

Rest: 20 minutes

Discharging: 1C to 1.00V/cell

After 300 cycles of charging and discharging, capacity 660 mAh (60%) can be maintained under the cycling test.

Note: All the above values subject to change without prior notice.


TYSONIC

NI-MH BATTERY SPECIFICATION

C. Abuse Test

NO.	Items	Test conditions	Test results
1 5		After 0.2C to 1.00V,cell is fully charged with 0.1C for 16hours(or	No explosion
	Short circuit test	with 0.5C for 2.2hours), then shorted for 1hour or longer with a $50 \sim 100 \text{m}\Omega$ load or less	Temperature is no more than 150° C on the surface of cell
2	Overcharge test	Cell is discharged with 0.2C to 1.00V,then 0.1C for 48 hours Cell is discharged with 0.2C to 1.00V, then 1C for 5 hours	No explosion Leakage may occur
3	Over discharge test (Forced discharge)	Cell is discharged with 0.2C to 0.00V, then with 1C forced discharged for 1hours	No explosion
4	Shock test (Drop test)	After 0.2C to 1.00V, cell is fully charged with 0.1C for 16hours ,then cell is dropped 3 times from a 1.9m height onto solid wood (10mm thick) with random orientation	The casing pipe can't rupture, and cell don't deformation, leakage, explosion.
5	Vibration test	Cell is vibrated continuously lengthwise for 60minutes Amplitude: 4mm Frequency: 1000times/minutes	No physical change No leakage Cell electrical performances unchanged
6	High temperature test	After 0.2C to 1.00V,cell is fully charged with 0.1C for 16hours(or with 0.5C for 2.2hours), cell is placed to the baking oven which its set-up temperature is 150±5°C	Cell don't explosion before 15 minutes
7	Penetration test (Hole drilling)	After 0.2C to 1.00V, cell is fully charged with 0.1C for 16hours or 0.5C for 2.2hours, cell is drilled diameter wise with a 4mm Φ drill at a depth of less than 1mm	No explosion
8	Water immersion test	 a. Cell is immersed in water for one month b. Cell is immersed in salt water with a 5% concentration for one month 	No explosion

TYSONIC

0.9

0

10

Fig3 1C Charging curve

Time(min)

45

60

75

30

1.1 L

15

Fig4 1C discharging curve

30

Time(min)

40

50

60

20

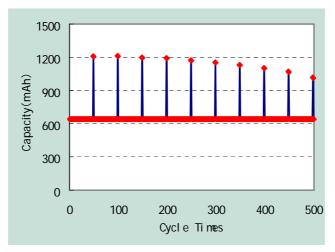


Fig5 Cycle life curve (Normal cycling test)